趣趣阁 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

第 210 章 三角换元法之探

又一日,学堂之内,戴浩文再开新篇。

戴浩文缓声道:“今日为师要与尔等讲授另一奇妙之法,名曰三角换元法。”

众学子皆屏气凝神,静待下文。

李华拱手问道:“先生,此三角换元法又是何意?”

戴浩文微笑答道:“且看,若有方程 x2 + y2 = 1,吾等可设 x = cosθ,y = sinθ,此即为三角换元。”

张明面露疑惑:“先生,为何如此设之?”

戴浩文耐心解释道:“诸君可知三角函数之特性?cos2θ + sin2θ = 1,恰与吾等所给方程相符。如此设之,可使求解之路径明晰。”

王强问道:“那若方程为 x2 + 4y2 = 4,又当如何?”

戴浩文道:“此时,可设 x = 2cosθ,y = sinθ。如此,原方程便化为 4cos2θ + 4sin2θ = 4,正合题意。”

赵婷轻声道:“先生,此设颇有巧妙之处。”

戴浩文点头道:“然也。再看若有式子 √(1 - x2),吾等设 x = sinθ,则此式可化为 √(1 - sin2θ) = cosθ 。”

李华思索片刻道:“先生,此换元法于解题有何妙处?”

戴浩文笑曰:“其妙处众多。若求函数之最值,或化简复杂之式,皆能大显身手。譬如,求函数 x + √(1 - x2) 之值域。”

众学子纷纷低头思索。

戴浩文见状,提示道:“已设 x = sinθ,代入可得 sinθ + cosθ 。诸君可还记得两角和之公式?”

张明恍然道:“先生,吾记得,sinθ + cosθ = √2sin(θ + π\/4) 。”

戴浩文赞道:“善!由此可知其值域为 [-√2, √2] 。”

王强又问:“先生,若式中含分式,又当如何?”

戴浩文道:“莫急,若有式子 (1 - x2) \/ (1 + x2) ,设 x = tanθ ,则可化简求解。”

赵婷道:“先生,此中计算恐有繁难之处。”

戴浩文道:“不错,然只要步步为营,细心推之,必能解出。”

说罢,戴浩文在黑板上详细演示计算过程。

......

如此讲学许久,学子们对三角换元法初窥门径。

戴浩文又道:“今留数题,尔等课后细细思索。若有不明,来日再论。”

学子们领命而去,皆欲深研此奇妙之法。

数日之后,众学子再次齐聚学堂。

戴浩文扫视众人,缓声问道:“前几日所授三角换元法,尔等可有研习?”

学子们纷纷点头,李华率先说道:“先生,学生课后反复思索,略有心得,然仍有诸多不明之处。”

戴浩文微笑道:“但说无妨。”

李华拱手道:“若方程为 9x2 + 16y2 = 144,该如何进行三角换元?”

戴浩文答道:“可设 x = 4cosθ,y = 3sinθ。如此一来,原方程化为 16cos2θ + 9sin2θ = 144,与原式契合。”

王强接着问道:“先生,那对于形如 √(x2 - 2x + 1) 这样的式子,又当如何三角换元?”

戴浩文耐心解释道:“先将其化为 √((x - 1)2) = |x - 1| ,再设 x - 1 = t ,若要三角换元,可令 t = sinθ 。”

赵婷疑惑道:“先生,为何有时设 x = cosθ ,有时又设 x = sinθ 呢?”

戴浩文道:“此需视具体问题而定。若方程或式子之形式与 cosθ 或 sinθ 之特性相关,便按需设之。”

张明道:“先生,三角换元法在求定积分时可有应用?”

戴浩文点头道:“自然有。譬如求∫(0 到 1) √(1 - x2) dx ,设 x = sinθ ,则可将其化为三角函数之积分,求解更为简便。”

说罢,戴浩文在黑板上详细推演计算过程。

“诸位且看,如此换元之后,积分上下限亦需相应变换。”

学子们目不转睛,仔细聆听。

王强道:“先生,那若遇复杂之复合函数,可否用三角换元?”

戴浩文笑曰:“只要能寻得恰当之替换关系,未尝不可。就如函数 f(x) = √(2 - x - x2) ,先将其内部配方,再进行三角换元。”

戴浩文边讲边写,学子们不时点头,似有所悟。

李华又问:“先生,三角换元法与均值换元法可有相通之处?”

戴浩文沉思片刻,道:“二者皆为换元之法,旨在简化问题。均值换元常以均值为桥梁,而三角换元则借助三角函数之特性。然具体运用,需依题而定。”

......

戴浩文滔滔不绝,讲解不停,学子们或问或思,气氛热烈。

不知不觉,日已西斜。

戴浩文轻咳一声,道:“今日所讲,尔等回去需多加温习。数学之道,在于勤思多练,方能融会贯通。”

学子们躬身行礼:“谨遵先生教诲。”

众人散去,然对三角换元法之探索,方兴未艾。

又过数日,课堂之上。

戴浩文道:“今来考查一番尔等对三角换元法之掌握。”

遂出一题:求函数 y = x + √(2 - x2) 的最大值。

学子们纷纷提笔计算。

片刻后,赵婷起身道:“先生,学生设 x = √2 cosθ ,解得最大值为√2 。”

戴浩文微微颔首:“不错。那再看此题,若 x、y 满足 x2 + y2 - 2x + 4y = 0 ,求 x - 2y 的最大值。”

众学子再度陷入沉思。

张明道:“先生,可否设 x - 2y = z ,将其转化为直线与圆的位置关系,再用三角换元求解?”

戴浩文抚掌大笑:“妙哉!果能举一反三。”

就这样,在戴浩文的悉心教导下,学子们在三角换元法的海洋中不断探索,学问日益精进。

......

时光荏苒,学子们在数学的世界里越走越远,而三角换元法也成为他们攻克难题的有力武器。

趣趣阁推荐阅读:武炼巅峰百炼飞升录带着农场混异界唐朝好地主特种兵之种子融合系统邪王追妻大明:我重生成了朱允炆天唐锦绣太子的一千次告白:危险少女我在大唐卖烧烤唐羽穿越成太子的小说荒年怀孕被休,我回娘家赚疯了帝王绝宠:不做帝王妃(完结)神级火爆兵王从神探李元芳开始逍遥小憨婿樱花之国上的世界末日大清隐龙从黑夜中杀出一条路重生之战神吕布以三国为基,铸至高圣朝武道至尊我只想当个咸鱼王爷神三群聊:三国穿越成太子之步步为营从特种兵开始融合万物大明,我的老丈人是卢象升大唐再起农家小子的古代上进日常穿成山里汉的小医妻退婚后,高冷女帝后悔了龙魂兵王铁十字从李元芳开始重生都市仙帝张逸风姜凤华兴传九州,开局忽悠项羽做我哥诡三国叶宁罗舞苏倾城小说地中海霸主之路花豹突击队奋斗在沙俄战国称雄资本大唐邪龙狂兵穿越之直播大唐大唐嫡长孙!调教妖孽暴君:军火狂后最强之军火商人大明:史上最狠暴君
趣趣阁搜藏榜:洪荒之吾为帝尊推背图之大唐帝国大明皇家维修工疯鼠重回北魏相公,陛下又请辞啦三国:因长得帅被小乔捡回了家雉朝飞之铁骨柔情大唐:咸鱼的我被李二看穿了内心风起刈羽大明之我真不想当皇帝啊抗日之活着再见备前宰相装傻三年:从状元郎到异姓王三国:我与我父,喝退十万曹军纵横图大明之崇祯大帝当云天明穿成林如海太岁官婿既然重生了,这个皇位必须我来坐异世召唤之帝者为尊大秦规划师未央金屋赋岳氏传奇之逆世护宋水浒:换天改道黄金时代,风云二十年三国:开局反了汉灵帝魔兽争霸之天下竞技隋兵霸途精灵之守灵人1855美国大亨神医毒妃逆天改命最强黄巾大明永乐,从教导皇孙开始水浒:灌口李二郎传我就是能投进太子驸马逍遥小地主大神,来淘个宝呗!明左回到原始社会当大酋长了解历史之大汉王朝重生之王爷的奋斗明末灾年,我有一个中药交易空间大唐:我辩机,誓死不从高阳回到古代搞工业错妻:入赘半年你说我认错媳妇了架空历史:从天道盘点意难平开始梁山之梦重生英伦,从黑帮到财阀
趣趣阁最新小说:开局乱世,我用半碗泡面换了个媳妇出塞之百年黄沙汉末燎原严党清流之间的第三种活法我!穿越者!你让我当帝皇?咸鱼古代的科举路大秦:开局拿出手榴弹,嬴政竟求我造反开局穿越大夏,我在战场杀敌成神宋朝的脊梁逆光谍影充军之奴,砍到一字并肩王最强夫婿,女帝终于翻身了!乱世医童身穿汉末,助刘备三兴汉室晋柱穿越三国之天命系统水浒:靖康之耻?我夺宋灭金!废物质子:一把火烧穿龙椅穿越二战建最强国军骑砍:崇祯开局召唤三百可汗卫士水浒:开局西门庆,杀贼就变强寒门日月抗战:我原始股开局,老总震惊!北魏谋国:这个玄德太强了成语故事科普曹操那些事隐龙圣手:痴傻三年,苏醒即无敌探唐:书荒自己写,与众共赏之逸云:一场探寻世界真相的小故事大魏第一武卒饥荒年:上山打猎带娇妻吃鸡靠给古代大佬剧透,我逆袭了!三国:朕不死!尔等终究是臣唐末从军行称霸汉末,从羌人叛乱开始水浒:我,绿林盟主,白衣秀士穿越成废皇子:系统在手天下我有三国战神:吕布逆天改命穿越1644不做替身后,被长公主截胡赐婚大树将军冯异重生吕布之我要苟活下去唐末,开局就被软禁东汉之乱世黄巾我和赵匡胤称兄道弟那些年生存技能点满,边境打猎养全家忆宋:顶级权谋对决【北宋篇】重生为质子,竟然称帝了?大明帝国一六一六秒懂三国全史记