趣趣阁 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

如果说“感知机”是单个的神经元,那么“多层感知机”就是将分散的神经元,连接成了网络。

在输入层和输出层之间,再加入若干层,每层若干个神经元。

然后每一层的每个神经元,与下一层的每个神经元,都通过权重参数建立起连接……

层与层之间,完全连接。

也就是说,第i层的任意一个神经元,一定与第i+1层的任意一个神经元相连。

这就是多层感知机,简称MLP。

但仅仅简单组合在一起,还不算真正的“人工神经网络”,必须对“感知机”的基本结构,做出一定的改进。

首先,必须加入隐藏层,以增强模型的表达能力。

隐藏层可以有多层,层数越多,表达能力越强,但与此同时,也会增加模型的复杂度,导致计算量急遽增长。

其次,输出层的神经元允许拥有多个输出。

这样模型就可以灵活地应用于各种分类回归,以及其他的机器学习领域,比如降维、聚类等。

此外,还要对激活函数做出扩展……

前一篇“感知机”论文中,主要使用的是阶跃函数sign,虽然简单易用,但是处理能力有限。

因此神经网络的激活函数,一般使用其他的非线性函数。

备选的函数有很多:sigmoid函数,tanh函数,ReLU函数……

江寒逐一进行了分析。

通过使用多种性能各异的激活函数,可以进一步增强神经网络的表达能力。

对于二分类问题,只需要一个输出神经元就够了。

使用sigmoid作为激活函数,来输出一个0到1之间的数值,用来表示结果为1的概率。

对于多类分类问题,一般在输出层中,安排多个神经元,每个分类一个。

然后用softmax函数来预测每个分类的概率……

描述完结构之后,就可以讨论一下“多层感知机”的训练了。

首先是MLP的训练中,经典的前向传播算法。

顾名思义,前向传播就是从输入层开始,逐层计算加权和,直到算出输出值。

每调整一次参数值,就需要重头到尾重新计算一次。

这样运算量是非常大的,如果没有强大的硬件基础,根本无法支撑这种强度的训练。

好在现在已经是2012年,计算机性能已经足够强悍。

前向传播无疑是符合直觉的,缺陷就是运算量很大,训练起来效率比较差。

与“感知机”的训练相比,MLP的训练需要引入损失函数和梯度的概念。

神经网络的训练,本质上是损失函数最小化的过程。

损失函数有许多种选择,经典的方法有均方误差、交叉熵误差等,各有特性和利弊。

整个训练过程是很清晰的。

先随机初始化各层的权重和偏置,再以损失函数为指针,通过数值微分求偏导的办法,来计算各个参数的梯度。

然后沿着梯度方向,以预设的学习率,逐步调整权重和偏置,就能求得最优化的模型……

写完这些就足够了,再多的内容,可以安排在下一篇文章里。

不过,江寒想了想,觉得这篇论文的内容,还是有点过于充实。

仔细琢磨了一下,干脆将其一分为二。

多层感知机的结构和前向传播的概述部分,单独成篇。

神经网络训练中,关于激活函数和损失函数讨论的部分,再来一篇。

然后分开投稿,这样不就可以多拿1个学术点了?

反正学术点又不看字数……

当然,这两篇论文都必须以前一篇的感知机为基础,分别进行阐述,而不能互为前提、互相引用。

这样就需要多动点脑筋了。

江寒又花了一个多小时,才将它们全都补充完整,并丰满起来。

接下来校队、润色一番后,翻译成英文,转换PDF……

投稿的时候,江寒仔细琢磨了一下,在三区里选了两家方向对口的期刊,投了出去。

没有选择影响因子更大的二区或一区期刊。

因为二区以上的期刊,虽然影响因子更高,发表后收获的学术点也多。

但发表难度太大,万一被打回来,再重新投递……

时间耽搁不起。

要知道,江寒只有三个月的时间。

一系列操作下来,差不多就到了10点半。

江寒脱掉外衣,去洗了个澡,然后换上睡衣。

忙了一下午带一晚上,直到这时才闲了下来。

然后他就想起了夏雨菲,也不知道她下午过得好不好,开不开心?

一股深切的思念,从心底涌出。

拿过手机,指纹解锁。

这才发现,有好多条未读微信。

写论文的时候太投入,根本听不到提示音。

点进夏雨菲的聊天界面,就看到了一排文字消息。

“在哪呢?”

“终于写完作业了,好累啊。”

“你在忙什么?”

“看来真的很忙,都没时间看微信了。”

“先睡了,明天还要上学……”

……

除了第一条是放学时间发来的,后面几条都来自10点之后,差不多5分钟一条。

“这傻姑娘,我没回复微信,也不说拨个电话或者语音通话……”

江寒叹了口气,发了个表情图过去。

夏雨菲很快就回复:“忙完了吗?”

江寒微微一笑。

这个时间她还没睡,莫非在一直等着我回复?

前一阵天天哄她上床,不会已经养成了习惯吧?

一天不哄,就睡不着……

“嗯,正准备休息,刚上床。”江寒回复。

夏雨菲:“那你赶紧休息吧,别太劳累了。”

江寒笑了笑,拨了个语音通话。

“喂?”夏雨菲秒接。

江寒声音温和:“想我了没?”

“没有。”

江寒微微一笑。

否认得这么干脆?

那就是想了。

女孩子的话,有时候就得反着听……

“想我你就打个电话,要不拨个语音通话,微信我有时不能及时看到。”江寒温和地嘱咐。

夏雨菲沉默了一小会儿,低声说:“我担心你在忙,别再耽误了你的正事……”

江寒笑了笑:“你要是一直都这么懂事,我可就有点舍不得欺负你了啊。”

夏雨菲脸一红。

他所说的“欺负”,不知道到底是哪种“欺负”?

那自己以后,到底是应该始终这么“懂事”,还是偶尔也“不懂事”一次呢?

“你在哪了?”夏雨菲不敢深想,就没话找话。

“酒店里。”江寒实话实说。

“嗯?”夏雨菲有点意外,“怎么没回寝室?”

“寝室里有点闹,我想专心研究点东西。”江寒回答。

“哪家酒店?”夏雨菲问。

“星河。”

“条件怎么样?”夏雨菲又问。

“还行。”江寒回答。

“你刚才说什么?”夏雨菲好像没听清楚。

“我说还行。”江寒稍微提高音量。

“什么?”夏雨菲仍然没有听清。

“信号怎么忽然变差了……”

那边嘀咕了一声,然后通话就突然中断了。

江寒正打算重拨,一个视频通话的邀请,忽然跳了出来。

视频……

不会是学人家查岗吧?

趣趣阁推荐阅读:风流乡村浑小子绝世龙帅萧子宁白惜凝绝世战魂最强农民混都市八零小甜妻徒儿你无敌了,出狱报仇去吧叶辰萧初然全部目录没有修仙天赋的我只能重拾武道风水师秘记一世独尊前妻攻略:傅先生偏要宠我别叫我恶魔重返八零,奉子成婚迎娶女大学生重生军少辣娇妻绝世龙帅签到三年,成为全球特战之父重回八一:长嫂的奋斗都市仙尊洛尘隐婚千亿总裁:小娇妻,撩一送一战神叶辰归来叶辰萧初然倾世神医:傲娇帝尊,强势撩婚后相爱:腹黑老公爆萌妻春野小神医最强万岁爷周翦秦怀柔重生后我嫁了未婚夫的皇叔我的七个姐姐绝色倾城陆云叶倾城霸道小叔,请轻撩!我的风情女上司神针侠医一胎双宝:总裁大人夜夜欢上门龙婿叶辰萧初然全文免费阅读绝世战龙绝世帝神叶辰萧初然至尊少年王妙手小神农我要赔钱去修仙,我真不想当首富在不正常的地球开餐厅的日子不会吧,我都无敌了,这个游戏才来?云其深极品小相师首长红人:权力巅峰从御医开始国产英雄总裁的替身前妻【完结】一号狂枭权力之巅超级奶爸破事精英3:CP精英巅峰高手混花都恋上邻家大小姐霸道总裁深深宠
趣趣阁搜藏榜:直播算卦:团宠真千金竟是玄学大佬我的秘境是万界中心灵识之作开局送失忆仙尊带小萝莉四处闯荡极品闲医欲爱重生:总裁的命定前妻勇敢者的女装潜行日记极品小村民奥特曼之未来食物链顶端的猛兽乡里人说好潜伏,系统让我零元购鲜肉殿下:再贱萌妃致命婚姻:遭遇冷血大亨!草根选调生被离婚穷奶爸,带娃从美食店开始第一夫人:我家先生超凶的化工研究院锁定陆海夫妇这对CP盛世豪恋:权少的心尖独宠离婚后成了满级战神三好大魔王[穿越X重生]抗战独狼:从粪叉到98k无敌路狗血那么近站住你马甲掉了坐公交车游遍全中国非宠不可:傲娇医妻别反抗御兽无限红词条,刚出新区碾万族无敌神婿男神我可以住你家吗都市:守护龙脉十年,下山即无敌身为男人的我女团出道,我火爆了六零:饥荒年当伙夫,社员都被馋哭了中式恐怖不行?纸人抬棺送走鹰酱重生之苦尽甘来无敌最俊朗新书被虐后冷心娇妻重生了萌娃带我去穿越后海的咸鱼开了家酒吧抖音神豪:直播打赏一万亿我,津卫台长,德云班主求捧红老刑警重生,谁敢不服?枭宠毒妃:第一小狂妻海贼:无敌从僵尸军团开始替嫁后天降巨富老公都市之妙手圣医帝少宠上瘾:老公,别心急爱情公寓之万界最强队伍我的七个姐姐绝色倾城帝国强宠:娇妻已预定一胎双宝:妈咪跑不掉
趣趣阁最新小说:故宫修复师:开局拆了景山镇物蓝星唯一修士暴打太平洋警察JOJO的奇妙冒险:替身时代我在工厂开挂的日子赤焱巨兽六道轮回博物馆末世归来的第一剑仙穿越之幽灵间谍全民转职,铠甲铸造师瞒不住了女总裁的专属特工:极简裁决灵气复苏:说好的一起证道呢?抗联烽火少年行我的鱼缸是片上古龙渊华娱:从03年开始的导演之王神豪环球旅行,从瑞士女友开始九龙鸿蒙鼎从流浪狗到末世狗王郑琦的混沌人生时空错位1938人生何处是归途:花城网事三十年华娱:我在娱乐圈修仙道爷我啊,可不好惹!诡道之至尊天下双子星劫退休神明在都市种田,被当成隐藏都市玩火,从出租司机到商业巨鳄开局:拿下校花,过享福人生小隐仙不努力就会变成魔法少女的玩物导演:暴发户的眼光你别挑当初杨老板分手?我上岸你哭什么相亲之王从长征路上建立新山头天道让你当帝皇,你变帝骑逢魔?辐射纪元:我的系统有亿点强我的1977:芳华易逝小人物如何能跨越阶层孤狼的觉醒:我的抗战1937葛正诡事录都重开了,当然是做第一深情啦!统御铁流:我的长征1934辞职后,我开着挖掘机浪迹天涯碳姬重生之人既要又要还要变身恶灵,我夺舍美少女这件事民国:开局万亿军火,专治不服开局上交异世界,工业克苏鲁进驻我的美好生活在都市2000:我的暴富时代开局被下套,喜得老婆一位!